RAND Lab@ FIU

RF, Analog, and Digital Laboratory for Advanced Signal Processing Circuits at Florida International University

New Beamforming Theory Paper in IEEE ACCESS

New paper accepted at IEEE ACCESS titled "Radix-2 Self-Recursive Sparse Factorizations of Delay Vandermonde Matrices for Wideband Multi-Beam Antenna Arrays", co-authored by Sirani Perera (Embry-Riddle Aeronautical University), Arjuna Madanayake (FIU) and Renato Cintra (UFPE, Brazil) has been accepted for publication. This work is partially supported by an NSF ECCS Award.

Powered by Squarespace

This research is sponsored by Ocius Technologies via an STTR Phase-2 award from DARPA Defense Science Office (DSO).


[ 1] N. Udayanga, A. Madanayake, S. I. Hariharan, J. Liang, S. Mandal, L. Belostotski, and L. T. Bruton, “A Radio Frequency Analog Computer for Computational Electromagnetics,” IEEE Journal of Solid-State Circuits (JSSC), pp. 1–1, 2020.

 

[2] N. Udayanga, S. I. Hariharan, S. Mandal, L. Belostotski, L. T. Bruton, and A. Madanayake, “Continuous-Time Algorithms for Solving Maxwell’s Equations Using Analog Circuits,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 10, pp. 3941–3954, Oct. 2019.

 

[3] N. Udayanga, A. Madanayake, S. I. Hariharan, and N. Hawk, “Continuous-Time Analog Computing Circuits for Solving the Electromagnetic Wave Equation,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2018, pp. 1–5.

 

[4] N. Udayanga, A. Madanayake, and S. I. Hariharan, “Continuous-Time Algorithms for Solving the Electromagnetic Wave Equation in Analog ICs,” in Proc. IEEE 60th Int. Midwest Symp. Circuits Syst. (MWSCAS), Aug. 2017, pp. 29–32.