RAND Lab@ FIU

RF, Analog, and Digital Laboratory for Advanced Signal Processing Circuits at Florida International University

New Paper in IEEE Trans. on Circuits and Systems-I: Regular Papers

The paper titled “Continuous-Time Algorithms for Solving Maxwell's Equations using Analog Circuits” has been accepted for publication at IEEE Trans. on Circuits and Systems-I: Regular Papers. The co-authors are Nilan Udayanga, SI Hariharan, Leo Belostotski, Soumyajit Mandal, Len Bruton and Arjuna Madanayake. This paper covers the fundamental theory side of our ongoing DARPA DSO Project with Ocius Technologies LLC.

Powered by Squarespace

This research is sponsored by Ocius Technologies via an STTR Phase-2 award from DARPA Defense Science Office (DSO).


[ 1] N. Udayanga, A. Madanayake, S. I. Hariharan, J. Liang, S. Mandal, L. Belostotski, and L. T. Bruton, “A Radio Frequency Analog Computer for Computational Electromagnetics,” IEEE Journal of Solid-State Circuits (JSSC), pp. 1–1, 2020.

 

[2] N. Udayanga, S. I. Hariharan, S. Mandal, L. Belostotski, L. T. Bruton, and A. Madanayake, “Continuous-Time Algorithms for Solving Maxwell’s Equations Using Analog Circuits,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 10, pp. 3941–3954, Oct. 2019.

 

[3] N. Udayanga, A. Madanayake, S. I. Hariharan, and N. Hawk, “Continuous-Time Analog Computing Circuits for Solving the Electromagnetic Wave Equation,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2018, pp. 1–5.

 

[4] N. Udayanga, A. Madanayake, and S. I. Hariharan, “Continuous-Time Algorithms for Solving the Electromagnetic Wave Equation in Analog ICs,” in Proc. IEEE 60th Int. Midwest Symp. Circuits Syst. (MWSCAS), Aug. 2017, pp. 29–32.